

		DPP – Elasticity	
Video Solutior	n on Website:-	https://physicsaholics.com/home/courseDetails/84	
Video Solution on YouTube:-		https://youtu.be/yGgEKX2CH64	
Written Solution	on on Website:-	https://physicsaholics.com/note/notesDetalis/23	
Q 1.	For a constant force, a rope breaks due to stress. Which of the following is useful to reduce the stress? (a) Increase the length of the rope (b) Reduce the length of the rope (c) Increase the cross sectional area of the rope (d) Reduce the cross sectional area of the rope		
Q 2.	The elongation production force of 30N is applied (a) 8.5 mm (c) 0.085 mm	uced in a copper wire of length 2m and diameter 3mm, when a ed is [young's modulus $Y = 1 \times 10^{11} N/m^2$] (b) 0.85 mm (d) 85 mm	
Q 3.	Copper wire of length 3m and area of cross-section 1 mm^2 , passes through an arrangement of two frictionless pulleys, P_1 and P_2 . One end of the wire is rigidly clamped and a mass of 1 kg is hanged from the other end. If Young's modulus for copper is $10 \times 10^{10} \text{ N/m}^2$, the elongation in the wire is : 1 m P_1 P_2 1 m P_2 1 m P_2 1 m P_2 1 m $(a) 0.05 \text{ mm}$ (b) 0.1 mm (c) 0.2 mm (d) 0.3 mm		
Q 4.	The force that must b an extension of 1mm (a) 100 N (c) 67 N	be applied to a steel wire 6m long and diameter 1.6mm to produce $[Y = 2 \times 10^{11} N/m^{2}] \text{ is approximate.}$ (b) 50 N (d) 33.5 N	
Q 5.	The Young's module $1.8 \times 10^8 N/m^2$. For elongation achievable (a) 0.2 mm (c) 0.4 mm	lus of a material is $2 \times 10^{11} N/m^2$ and its elastic limit is or a wire of 1m length of this material, the maximum elastic e is (b) 0.5 mm (d) 0.9 mm	

Q 6. A compressive force, F is applied at the two ends of a long thin steel rod. It is heated, simultaneously, such that its temperature increases by ΔT . The net change in its length is zero. Let L be the length of the rod, A is its area of cross-section. Y is Young's modulus, and α is its coefficient of linear expansion. Then, F is equal to (thermal expansion due to temperature change is given by $\Delta l = l\alpha\Delta T$)

(a) $L^2 Y \alpha \Delta T$	(b) $\frac{AY}{\alpha \Delta T}$
(c) $AY\alpha\Delta T$	(d) $LAY \alpha \Delta T$

- Q 7. A wire suspended vertically from one of its ends is stretched by attaching a weight of 200 N to the lower end. The weight stretches the wire by 1mm. Then the elastic energy stored in the wire is
 (a) 20 J
 (b) 1 J
 - (a) 20 J (b) 1 J(c) 2 J (d) 0.1 J
- Q 8. The following four wires are made of the same material. Which of these will have the largest extension when the same tension is applied?
 - (a) length = 200 cm, diameter = 2 mm
 - (b) length = 300 cm, diameter = 3 mm
 - (c) length = 50 cm, diameter = 0.5 mm
 - (d) length = 100 cm, diameter = 1 mm
- Q 9. If P is the stress and Y is Young's Modulus of the material of the wire, the energy stored in the wire per unit volume is

(a) $\frac{2Y}{P^2}$ (b) $2P^2Y$ (c) $\frac{P^2}{2N}$ (d) $\frac{1}{2Y}$

- Q 10. Two wires of the same material and length but diameter in the ratio 1 : 2 are stretched by the same force. The ratio of potential energy per unit volume for the two wires when stretched will be :
 - (a) 1 : 1 (c) 4 : 1 (d) 16 : 1
- Q 11. A wire fixed at the upper end stretches by length l by applying a force F. The work done in stretching is:

(a)
$$Fl$$
 (b) $\frac{F}{2l}$
(c) $\frac{Fl}{2}$ (d) $2Fl$

- Q 12. A metal wire of mass 10 kg, 3 m long and having a cross-sectional are 4 mm^2 is suspended on roof. Find the elongation produced in wire due to its self weight (Young modulus of the metal is $2 \times 10^{11} N/m^2$ & g = 10 m/s²)
 - (a) 0.375 mm (c) 0.276 mm (d) 0.421 mm

- Q 13. A wire is made of a material of density 10 g/cm³ and breaking stress $5 \times 10^9 N/m^2$. If g = $10ms^{-2}$ the length of the wire that will break under its own weight when suspended vertically is
 - (a) 5×10^2 m (b) 5×10^3 m (c) 5×10^4 m (d) 5×10^5 m
- Q 14. Young's modulus of a rod is $\frac{AgL^2}{2\lambda}$ for which elongation is λ due to its own weight when suspended from the ceiling. L is the length of the rod and A is constant, which is: (a) Area
 - (b) Mass per unit length
 - (c) Mass per unit length per unit area
 - (d) Area per unit mass
- Q 15. The compressibility of water is 4×10^{-5} per unit atmospheric pressure. The decrease in volume of 100 cubic centimeter of water under a pressure of 100 atmosphere will be (a) 0.4 cc (b) 4×10^{-5} cc (c) 0.025 cc (d) 0.004 cc
- Q 16. When a pressure of 100 atmosphere is applied on a spherical ball, then its volume reduces to 0.01%. The bulk modulus of the material of the rubber in dyne/ cm^2 is (a) 10×10^{12} (b) 100×10^{12}
 - (c) 1×10^{12} (d) 1000×10^{12}
- Q 17. The Young's modulus, bulk modulus and the modulus of rigidity have (a) no dimensions (c) different dimensions (d) none of the above

Q 18. The volume of a solid at 1 atm pressure is $10^4 \ cm^3$. If the pressure is increased to 51 atm then find percentage change in its volume ($\beta = 10^{12} \ dyne/cm^2$) (a) 0.5 % (b) 0.05 % (c) 0.005 %

- Q 19. The longitudinal stain in a metal bar is 0.05. If the Poison's ratio for this metal is 0.25, then the lateral strain will be
 (a) 0.2
 (b) 0.02
 (c) 0.15
 (d) 0.0125
- Q 20. A graph is shown between stress and strain for a metal. The part in which Hooke's law holds good is

